Microbiomics meets Animal Production

Odette Pérez Hauke Smidt

Wageningen University & Research Centre

•Mission: "To explore the potential of nature to improve the quality of life"

WAGENINGEN UNIVERSITY

WAGENINGEN UR

•Wageningen UR is collaboration between University, VHL School of Higher Education & Research Institutes (DLO)

·6,500 staff & 10,000 students
from > 100 countries

Laboratory of Microbiology \pm 80 co-workers Head: Prof. Willem M. de Vos in 3 groups

Prof. John van der Oost

Bacterial Genetics extremophile engineering

Molecular Ecology gut & soil ecogenomics Microbial Physiology syntrophic bioconversions

Prof. H. Smidt Dr. E. Zoetendal Prof. M. Kleerebezem

Prof. Fons Stams

Why are We Studying the GI Tract Microbiota?

GI Tract Microbiota plays a key role in host health

Which microbes are in the GI tract?

What are the microbes doing in the GI tract?

How can we influence the microbiota?

Interactions in the GI tract

The Gut and Gut Bacteria

- Most metabolically active organ
- > Dominated by a diverse microbiota
- > Can be modulated by diet
- Supplies micronutrients
- Polysaccharides fermentations, SCFA...
- > Epithelial cells proliferation, gut barrier integrity
- Direct immune defenses (against pathogens)
- Non-immune defenses (gut barrier integrity)
- Energy homeostasis

Gut Bacteria in numbers

Stomach and Duodenum: 10°-10⁴ CFU/g

Lactobacillus Streptococcus Enterobacteria Clostridium Eubacterium Bifidobacterium

Ileum and Jejunum: 10⁷-10⁹ CFU/g

Bacillus Bacteroides spp.

Caecum and Colon: 10¹¹-10¹² CFU/g

Lactobacillus Peptrostreptococcus Streptococcus Bacteroides Eubacterium Prevotella Clostridium

The Microbial Iceberg

- Cultured fraction (~20%): Some physiological data available
- Uncultured fraction (~80%):
 Only (partial) 165 rRNA sequence known

Microbial cells outnumber host cells by 10-fold

- > 1000 species of microbes in the gut ecosystem
- Predominance of anaerobic bacteria

Community-based Approaches

Zoetendal et al., 2008, Gut 57:1605-1615

Studying the diversity of the microbiota

MOLECULAR TAXONOMY

rRNA based phylogeny

Small subunit rRNA (16S/18S)

- Ideal phylogenetic marker
- Domains of different degrees of conservation
- Size: 1500 nucleotides
 - Small enough to sequence easily
 - but still large enough to contain information
- Naturally amplified
- Present in every (microbial) cell
- More than 1,000,000 sequences in databases

Denaturant Gradient Gel Electrophoresis (DGGE)

DGGE

PCR product: Separation of bands depending on sequence (GC content). High GC bacteria lowest part of the gel (different gradients used)

Quantitative PCR (qPCR)

<u>qPCR</u>

- DNA quantification of a gene-of-interest
- SYBR-Green (fluorescent when bound to double-stranded DNA)
- Onset of the logarithmic phase (threshold)
- Standard curve (dilution series) with gene-of-interest
- C_t -values relate to known number of DNA copies initially present

Novel HTP Tools for GIT diversity The Intestinal Tract Chip Suite

Pig Intestinal Tract Chip (PITChip)

Currently > 800 OTU mostly *Firmicutes* & *Bacteroides/Prevotella* & *Proteobacteria*

Mostly uncultured (53%)

(Perez et al., in preparation)

PITChip probe design

Export V1 and V6 region (41-68bp)

AACGAGAGACTCCTTCGGGACGATCTAGTGGCGAACGGGTGAGTAAC

Sequence from the left side

AACGAGAGACTCCTTCGGGACGAT

Sequence around middle nucleotide

TCCTTCGGGACGATCTAGTGGCGA

Sequence from the right side

TCTAGTGGCGAACGGGTGAGTAAC

Optimization of Tm (narrow range of 58.4-63.4°C)

Reverse complement

Aprox. 3000 probes

Principle of the phylogenetic microarrays

Why the current interest in production animal microbiota?

- > What is the role of microbes in the triangle with animal nutrition, health and performance?
 - > AWAY FROM BLACK BOX APPROACHES
- For many years, antibiotics used as growth promoters YET:
 - >How do they work?
 - >Banned since 2006 (EU)
- > Quest for alternative additives

Production Animal Research @ MIB Focus on Pigs

 \rightarrow Which are the first bacterial colonizers in the pig GIT?

 \rightarrow Which bacteria are part of the indigenous microbiota in the neonate pig GIT?

→ Effect of environment factors, diet and host on bacterial colonization?

→Alternatives to antibiotics: Improved dietary intervention strategies possible (pre/probiotics)?

Microbial succession in Piglet feces

Largely based on cultivation-dependent studies

Microbiota instability after weaning

Changes in microbiota after weaning

> more *E. coli*, *Shigella*, etc.

> fewer lactobacilli; especially L.sobrius (L.amylovorus)

Day-treatment	L. sobrius	L. reuteri	LAB
2 5 12 19	$4.72 \pm 3.9 \times 10^{7}$ $9.63 \pm 1.2 \times 10^{8}$ $1.01 \pm 1.05 \times 10^{8}$ $6.85 \pm 0.1 \times 10^{8}$	$\begin{array}{c} 1.34 \pm 0.5 \times 10^{7} \\ 2.13 \pm 2.17 \times 10^{7} \\ 3.08 \pm 3.97 \times 10^{7} \\ 1.48 \pm 1.3 \times 10^{7} \end{array}$	$7 \pm 0.1 imes 10^7 \ 9.7 \pm 0.5 imes 10^8 \ 1.4 \pm 0.9 imes 10^8 \ 7.1 \pm 2.6 imes 10^8$
23–UW 23–W	$4.72 \pm 3.9 imes 10^7 < 10^{3*}$	$1.34 \pm 0.5 imes 10^7 \ < 10^{3\star}$	$7.1 \pm 1.3 imes 10^7 \ 4.4 \pm 0.5 imes 10^{5*}$
27–UW 27–W 32–UW 32–W	$2.46 \pm 0.9 imes 10^{\circ} \ < 10^{3*} \ 1.18 \pm 0.9 imes 10^7 \ < 10^{3*}$	$egin{aligned} 1.07 \pm 0.8 imes 10' \ < 10^{3*} \ 6.13 \pm 1.3 imes 10^7 \ < 10^{3*} \end{aligned}$	$8.2 \pm 0.8 imes 10^{\circ}$ $5.1 \pm 0.1 imes 10^{6*}$ $6.1 \pm 0.5 imes 10^{7}$ $2.1 \pm 0.1 imes 10^{6*}$

> UW: unweaned W: weaned

Changes in *Lactobacillus* spp. carbohydrate utilization capacity after weaning

0 (25)1 (5)2 (15)5 (11)11 (20)Glucose100100100100100Galactose100100939159Fructose5680672788Lactose1001001009177Cellobiose3627208077Arabinose005512Ribose16003612Xylose008710053Starch829203660		Days after the weaning (number of isolates)						
Glucose100100100100100Galactose100100939159Fructose5680672788Lactose1001001009177Cellobiose3627208077Arabinose0005512Ribose16003612Xylose008710053Starch829203660		0 (25)	1 (5)	2 (15)	5 (11)	11 (20)		
Galactose 100 100 93 91 59 Fructose 56 80 67 27 88 Lactose 100 100 100 91 77 Cellobiose 36 27 20 80 77 Arabinose 0 0 0 55 12 Ribose 16 0 0 36 12 Xylose 0 0 55 6 Raffinose 100 100 87 100 53 Starch 8 29 20 36 60	Glucose	100	100	100	100	100		
Fructose 56 80 67 27 88 Lactose 100 100 100 91 77 Cellobiose 36 27 20 80 77 Arabinose 0 0 0 55 12 Ribose 16 0 0 36 12 Xylose 0 0 55 6 Raffinose 100 100 87 100 53 Starch 8 29 20 36 60	Galactose	100	100	93	91	59		
Lactose1001001009177Cellobiose 36 27 20 80 77 Arabinose000 55 12 Ribose1600 36 12 Xylose000 55 6Raffinose100100 87 100 53 Starch82920 36 60	Fructose	56	80	67	27	88		
Cellobiose 36 27 20 80 77 Arabinose000 55 12 Ribose1600 36 12 Xylose000 55 6Raffinose100100 87 100 53 Starch82920 36 60	Lactose	100	100	100	91	77		
Arabinose0005512Ribose16003612Xylose000556Raffinose1001008710053Starch829203660	Cellobiose	36	27	20	80	77		
Ribose16003612Xylose000556Raffinose1001008710053Starch829203660	Arabinose	0	0	0	55	12		
Xylose00556Raffinose1001008710053Starch829203660	Ribose	16	0	0	36	12		
Raffinose1001008710053Starch829203660	Xylose	0	0	0	55	6		
Starch 8 29 20 36 60	Raffinose	100	100	87	100	53		
	Starch	8	29	20	36	60		

Pieper et al., FEMS Microbiol. Ecol., 2008

Our main pig research questions during the past 8 years

 \rightarrow Which are the first bacterial colonizers in the pig GIT?

 \rightarrow Which bacteria are part of the indigenous microbiota in the neonate pig GIT?

→ Effect of environment factors, diet and host on bacterial colonization?

→Alternatives to antibiotics: Improved dietary intervention strategies possible (pre/probiotics)?

Case study 1: Fermentable carbohydrates affect microbiota especially in the small intestine

Konstantinov et al., AEM, 2004

Maintenance of *Lactobacillus* spp. populations with mix of fermentable carbs

Increased production of lactic acid in test animals

Lactobacillus sobrius/amylovorus In vitro and in vivo functionality

Lactobacillus sobrius represents new isolate within Lactobacillus amylovorus group

Abundant in piglet small intestine
 Globally distributed
 (NL, D, UK, China, FIN, IT, US...)
 Genome sequencing ongoing (Univ. Helsinki)

 Composition of gut microbiota changes after birth from a simple to a complex and stable community influenced by the environment

Weaning Piglets:

Diet and host are major factors influencing microbiota
 dietary impact on *Lactobacillus* spp. population
 L. sobrius universal & abundant colonizer pre-weaning
 Potential marker for stable community after weaning

Case study 2 Na-butyrate: background

- Product of fermentation (SCFA) in the large intestine
- Energy substrate for the colonocyte
 - trophic effect + colonic barrier integrity
 - immuno-modulating properties
- Pre-gastric hydrolysis of milk fats in suckling mammal
- Anti-bacterial properties

Earlier studies in farm animals (baby calves & pigs):

- Improved growth performance and feed efficiency
- Decreased frequency of diarrhea
- Increased enzyme activities (pancreas, intestine)

Oral Na-butyrate trial

INRA St. Gilles

<u>Hypothesis</u>:

Na-butyrate <u>provided early after birth</u> is able to speed up the maturation of the GIT and help overcome the critical period of weaning

48 piglets

Experimental design

Supplementation with Na-butyrate during suckling period:

- Dose: 0.3% of the dry matter intake
- Administration: œsophagal tube, twice a day (9:00 am, 3:00 pm)
- Post weaning period, administration of reference weaner diet:
 - D 0 to D 4: 10 to 80% of energy needs
 - D 5 to D 11/12: 100% of energy needs

Results: body weight

Growth of piglets during suckling period (3 replicates)

Results: body weight

Growth of piglets during post-weaning period

Multivariate analysis of DGGE data

Significant effect on total bacteria in ileum and caecum

Ileum

Multivariate analysis of DGGE data

Significant effect on Lactobacillus groups in the stomach

Quantification of total bacteria

qPCR: No effect of SB on bacterial numbers

PITChip data: antimicrobial effect

RDA

Higher taxonomic group

Group

Fibrobacter succinogenes-like

Treponema-like

SB changes microbial composition

More homogeneous group with SB

Relative

abundance (%)

Effect

down

down

0.013

0.025

0.66

0.05

p-value

	Caecum 29d	Alphaproteobacteria	Sphingomonas-like	down	0.017	0.08
		Spirochaetes	Treponema-like	up	0.028	0.04
			Bacteroides pyogenes-like	down	0.039	0.80
SD change antimicrophial offerd		Bacteroidetes	Prevotella melaninogenica-like	down	0.025	0.48
SD Shows an innicrobial effect	Calan 20d		Uncultured Bacteroidetes	down	0.02	1.0
C , ·	Colon 29d		Uncultured Porphyromonadaceae	down	0.042	0.74
atter weaning			Uncultured Prevotella	down	0.013	3.07
		Flavobacteria	Myroides odoratus-like	down	0.038	0.49
	Ileum 29d	Clostridium cluster I	Clostridium perfringens-like	up	0.006	2.13
	Ileum 40d	Alphaproteobacteria	Labrys methylaminiphilus-like	down	0.037	0.45
		Clostridium cluster XIVa	Dorea-like	down	0.03	0.83
			Eubacterium plexicaudatum-like	down	0.041	0.37
			Eubacterium ventriosum-like	down	0.043	0.37
			Roseburia intestinalis-like	down	0.037	1.21
		Deltaproteobacteria	Uncultured Deltaproteobacteria	down	0.006	0.10

Fibrobacteres

Spirochaetes

Conclusions

 No difference in BW between the 2 groups (Control / Butyrate)

- SB did not affect total bacterial counts but relative abundance of individual groups
- Pre-weaning effect of SB in the ileum, caecum and stomach
- Post-weaning antimicrobial effect of Na-butyrate in the ileum
- SB homogenizes microbial profiles

Case study 3 Carvacrol: experimental setup

Identified as the active constituent of Oregano Oil Main antibiotic molecule in Oreganos

Case study 3 Carvacrol: experimental setup

<u>Animals</u>

- <u>7</u> suckling <u>piglets</u> from 1 litter
- T-cannulation at the terminal ileum: 17 19 days of age

<u>Diets</u>

- before weaning piglets suckled by the sow
- post weaning 2 different starter diets applied
- * control = reference diet from FFPH (starter A)
- treatment = carvacrol (150 g/ton)

Collection of samples

| Day |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| -3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 10 | 13 | 14 | 15 |

Quantification of total bacteria and Lactobacillus by gPCR

dynamics in time of bacterial numbers present in control and treatment piglets

Sampling days

Multivariate analysis: of PITChip data

p (time) < 0.01

PITChip: Diversity per treatment

Relative diversity in time

- No effect of carvacrol on performance
- Significant effect of sampling time
- Fermentation-end products analysis reflected an altered microbiota. No effect of carvacrol
- Total bacterial counts stable: decrease in beneficial bacteria _____ increase in pathogens
- Antimicrobial effect (Gram-negative bacteria)
- Data suggests an increased stability when carvacrol is added

Chicken gut microbiota: microbial succession

Barnes et al., 1972 Mead and Adams, 1975 *Lev and Briggs, 1956*

Chicken gut microbiota

Microbial composition of the ileum and caecum of broiler chickens, determined by sequencing of 1,230 clones from a 165 rDNA community DNA library

Lu, J. et al. 2003. Appl. Environ. Microbiol. 69(11):6816-6824

Chicken Intestinal Tract Chip (CHICKChip)

Currently > 1500 seq

mostly Firmicutes

&

Bacteroides/Prevotella

& Proteobacteria

Mostly uncultured (>70%) Still: Find unique OTUs Design probes

WU-MIB Animal GIT Research

Hauke Smidt

- 🕿 +31 317 483102 (office/mobile)
- Fax: +31 317 483829
- △ hauke.smidt@wur.nl

- Odette Perez
- 🕿 +31 317 483115
- Fax: +31 317 483829
- M odette.perez@wur.nl
- Laboratory of Microbiology, Wageningen University Dreijenplein 10, 6703 HB Wageningen, The Netherlands

Acknowledgements

Wageningen University

Microbiology

Sara de Filippi Paula Fajardo Hans Heilig Sebastian Tims Tom van den Bogert Sergey Konstantinov Hauke Smidt Willem M. de Vos

Animal Nutrition

Martin W.A. Verstegen Wilbert F. Pellikaan Ajay Awati

INRA

Jean-Paul Lallès Terence Pellet

Schothorst Lelystad

Paul Bikker Jeannette Kluess Jan Fledderus

