

UNIVERSITÀ DEGLI STUDI DI PERUGIA

The European Chicken Commitment challenge: toward the use of novel genotypes with slower-growth rate for meat production

MUNICOLORUM MUNICIPALITY

ALMA MATER STUDIORUM Università di Bologna

EU - Meat Changes The European Chicken Commitment challenge: toward the use of novel genotypes with slower-growth rate for meat production

PRIN 2022

Coordinator: Prof. Simona Mattioli, University of Perugia, Department of Agricultural, Environmental and Food Science – DSA3

Finanziato dall'Unione europea NextGenerationEU

Università degli Studi di Padova

FROM MARKET INITIATIVES TO LEGISLATION

To whom?
How?
When?
What ?
Who?

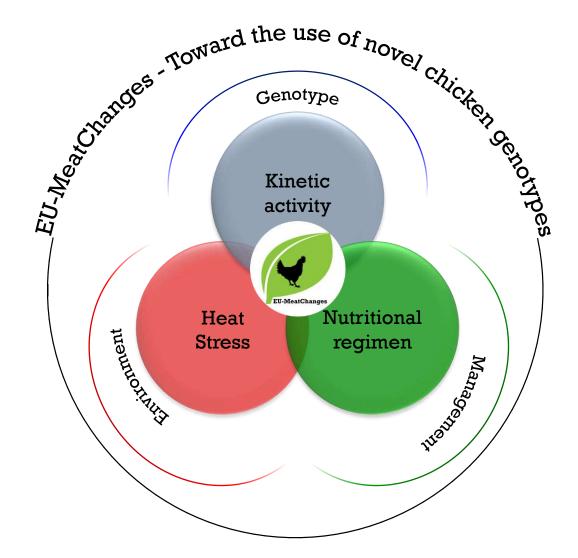
The European Chicken Commitment (ECC) and the Better Chicken Commitment (BCC) are science-based chicken welfare policies that are approved and supported by animal welfare organizations all over the world.

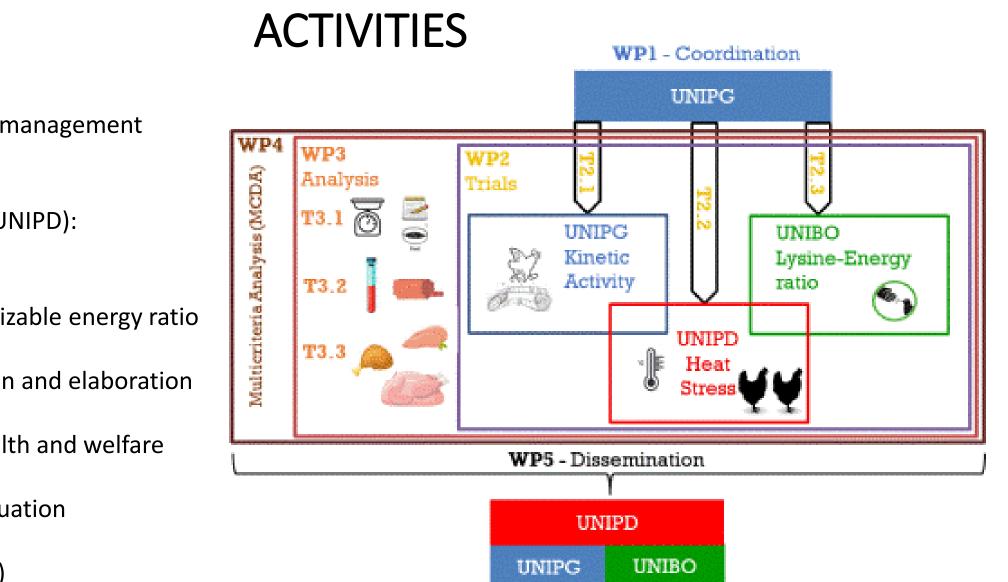
The decision-making process for additional breeds to be accepted by the ECC involves:

The company working with the ECC organizations to test the genotype at an independent research center according to the RSPCA* Broiler Breed Welfare Assessment Protocol

The results have to be submitted to the Technical Working Group of the ECC

*file:///C:/Users/Admin/Dropbox/II%20mio%20PC%20(DESKTOP-PCLEOHS)/Downloads/RSPCA%20Broiler%20Welfare%20Assessment%20Protocol%20May17.pdf The company and the research institute conclude that the genotype meets the thresholds set by the protocol, then it can be accepted as an ECC-approved genotype. The genotype has to go through additional stages of review and consultation, before the committee reviews, discusses, and then votes to make a decision.




AIM OF THE PROJECT

The **aim** of the project is to characterize ECC-approved chicken strains in terms of productive performance, metabolic traits, animal welfare indicators and product quality, according to

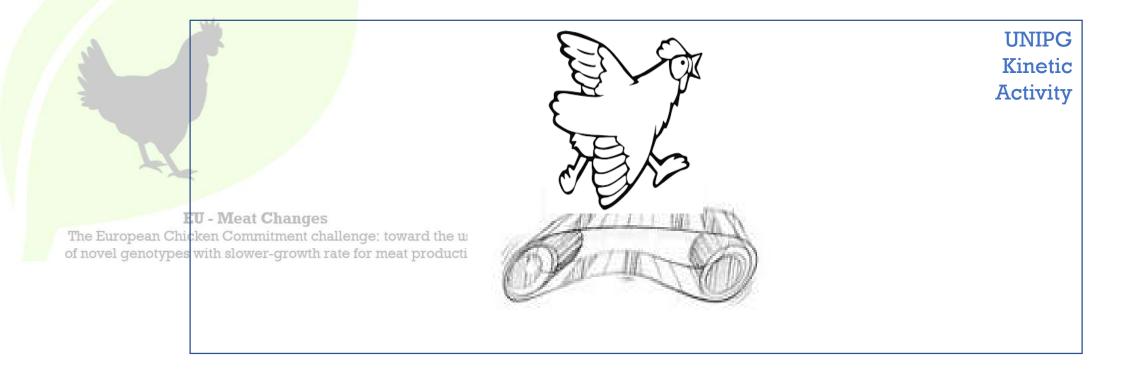
- **genotype-related factors** kinetic activity
- environmental conditions heat stress exposure
- **nutritional regimens** lysine-to-metabolizable energy ratio

- WP1 whole project management (UNIPG)
- WP2 animal trials (UNIPD): •
- T2.1 kinetic activity
- T2.2 heat stress
- T2.3 lysine-to-metabolizable energy ratio
- WP3 data acquisition and elaboration (UNIBO):
- T3.1 Performance, health and welfare
- T3.2 Metabolic traits
- T3.3 Meat quality evaluation
- WP4 MCDA (UNIPG) ۲

Thanks for the attention

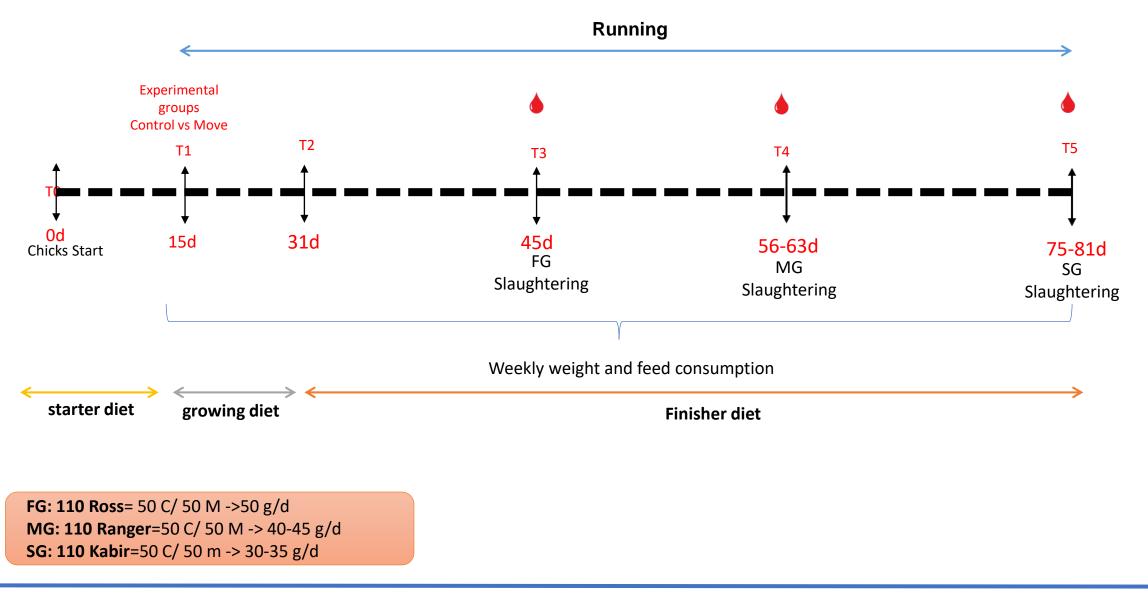
Preliminary results are coming....

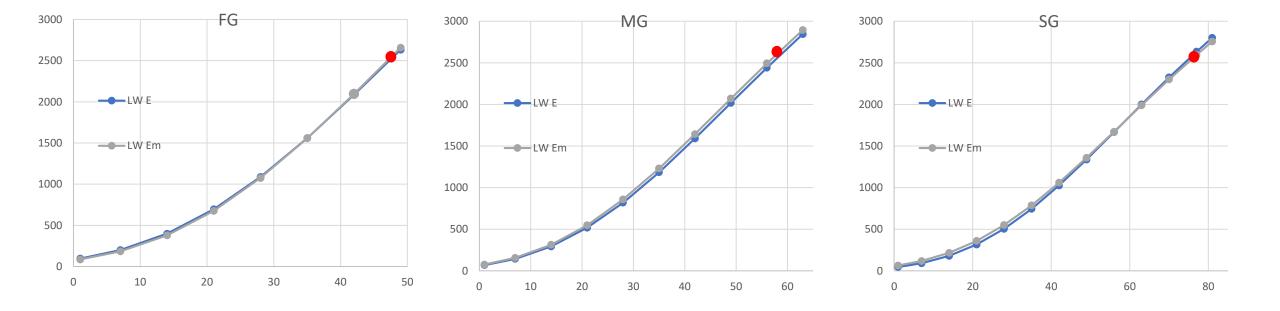
EU - Meat Changes The European Chicken Commitment challenge: toward the use of novel genotypes with slower-growth rate for meat production


Finanziato dall'Unione europea NextGenerationEU

Prof. Simona Mattioli, Prof. Alessandro Dal Bosco, Prof. Cesare Castellini, Dr. Francesca Di Federico, Dr. Luigia Bosa, Dr. Lorenzo Nompleggio, Mr. Giovanni Migni, Mrs. Cinzia Boldrini

Finanziato dall'Unione europea NextGenerationEU

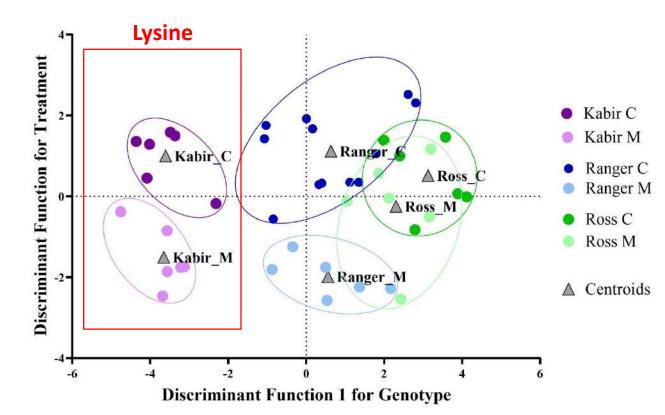




UNIVERSITÀ DEGLI STUD DI PERUGIA

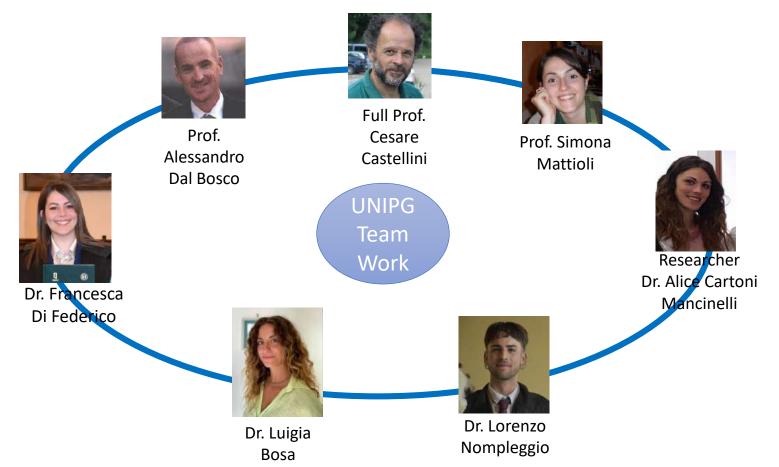
Experimental Plan

Performance on farm – DWG (Gompertz)


65 variables -> 38 variables -> 5 metabolism -> 10 PCs -> MANOVA 3x2 (genotype x treatment)

Energetic (EM)				Proteic (AAM)				Lipidic (LM)		Glucidic (GM)		Antioxidant (AM)		
	PC				PC				PC	PC		PC		PC
Variable	1 EN	2 EN	3 EN	Variable	1 AA	2 AA	3 AA	4 AA	Variable	1 LIP	Variable	1 GLU	Variable	1 ANTIOX
IMP	.825			Tyrosine	.898				Acetate	.850	Glucose	.987	Beta-Alanine	.808
Fumarate	762			Asparagine	.776				Malonate	850	Mannose	.879	Glutathione	.808
NAD	.716		525	Alanine	.750						Lactate	.759		
Aspartate		.815		Lysine	701									
Creatine		.801		Serine	.645									
ADP		.750		Taurine		789								
AMP			.936	Methionine		.754								
				Pyruvate		.740								
				Isoleucine			.861							
				Leucine			.759							
				Phenylalanine			.701							
				Glycine				.857						
				2-Oxoglutarate				714						
% of variance	34.00	25.45	17.23	% of variance	39.75	13.15	12.81	7.76	-	-	-	-	-	-
Total variance (%)	e 76.68		Total variance (%)	73.46			Total variance (%)	72.20	Total variance (%)	77.39	Total variance (%)	65.25		

Standardized Canonical Discriminant Function Coefficients and centroids										
Geno	type	Treatment								
	Wilks'			Variable	Wilks'	Df 1				
Variable	lambda	Df 1	Df 2		lambda					
PC 1 LIP [#]	.387***	472	.431	PC 3 EN#	.734***	-1.038				
PC 1 AA [#]	.543***	.916	.079	PC 1 GLUC	.938 ^{ns}	744				
PC 2 EN [#]	.585***	206	.500	PC 2 EN	.961 ^{ns}	.035				
PC 1 EN	.596***	.104	.117	PC 2 AA	.976 ^{ns}	810				
PC 1 GLUC [#]	.608***	448	591	PC 1 AA	.981 ^{ns}	.799				
PC 3 AA	.625***	.471	.855	PC 1 LIP	.984 ^{ns}	1.243				
PC 1 ANTIOX	.751**	194	737	PC 3 AA	.991 ^{ns}	.306				
PC 4 for AA [#]	.777**	1.017	.305	PC 1 for ANTIOX	.996 ^{ns}	471				
PC 2 for AA [#]	.804*	472	339	PC 4 for AA	.998 ^{ns}	.506				
PC 3 for EN	.885 ^{ns}	007	.168	PC 1 for EN	1.000 ^{ns}	.937				
Functions at Group				Functions at Group						
Centroids				Centroids						
Kabir		-3.628	.837	С		.936				
Ranger		.609	-1.682	Μ		-1.248				
Ross		2.715	1.685							



- ✓ GEN: The variables analysed determine a clear separation between FG and SG, implying notable differences in their proteic and lipidic/energetic metabolism.
- ✓ TRT: The treatment affects energetic metabolism mostly in SG (Kabir) and MG (Ranger).

EACH GENOTYPE SHOWS A DIFFERENT METABOLISM

Thank you for the attention

with the collaboration of:

Prof. Luca Laghi (UNIBO) Prof. Laura Menchetti (UNICAM) Prof. Lara Macchioni (UNIPG) Dr. Magdalena Davidescu (UNIPG) Prof. Gugliemo Sorci (UNIPG) Dr. Sara Chiappalupi (UNIPG) Dr. Laura Salvadori (UNIPG)

Finanziato dall'Unione europea NextGenerationEU

