Big Data and Robotics for Precision Farming: creating value with sensor data

Tomás Norton M3-BIORES, A2H Dept of BioSystems KU Leuven

The evolution of the animal engine $57 \rightarrow 77 \rightarrow 05$

Evolution of meat protein production/consumption

0 kilograms

1961

1970

Source: UN Food and Agricultural Organization (FAO)

1980

1990

2000

OurWorldInData.org/meat-and-seafood-production-consumption/ • CC BY-SA

2013

Precision livestock Farming

Precision livestock farming (PLF), can be defined as the management of livestock production using the principles and technology of process engineering.

(Wathes et al., 2008)

Who is Precision livestock Farming for?

Farms today face a big challenge: <u>too many animals too few staff</u> →Increasing hard to get good people

 \rightarrow Animals are more efficient but also more "sensitive"

For the farmer who:

- is seeking to be resource efficient
- is conscious of animal health
- is conscious of animal welfare

PLF is still emerging in many livestock production sectors!

Source: www. farmersweekly.co.uk

Principles of PLF

PLF: a lot of technical progress since the 80's

Precision Livestock Farming was first used in a publication by Christopher Wathes (Wathes, 2003).

Since 2009, there have been 15 large European Research projects (FP7, H2020) containing PLF (50% after 2019)

United States Department of Agriculture started on PLF since 5 years: 2014 → FFAR programme set-up

2018 \rightarrow Food and Ag. Cyber Informatice

2019→ Interdisciplinary Engagement in Animal Systems

Norton, Brown-Brandl et al., 2022

The gap between research and application!

What the literature shows is possible:

- Weighing broilers from sound
- Counting broilers from video
- Stress monitoring from video/sound
- Respiratory health monitoring from sound
- Estimating lameness from video

What is available:

- Weight monitoring
- Environmental monitoring
- Simple behaviour indicator monitoring from video
- Litter monitoring

Remainder of this talk

Developing Automated Monitoring solutions:

- Basic animal monitoring: what is the current limitation?
- How to improve: target specific application
- Combining multiple technologies (weighing)
- Development Automated Management solutions:
 - High value potential of robotics

Development of automated monitoring technology

Calculating animal response indicators from video data

Basic image processing methodology for behaviour monitoring

Parameterizing the background by distribution $p(X|\theta)$, and estimating θ via observed data

- If new observed data obey this distribution \rightarrow output 0 (static background)
- Otherwise → output 1 (moving animal)
- Updating model parameters θ

Technical attributes

- Only sensitive to activated broilers (neglect the static ones)
- Light weighted (~30fps @AMD Ryzen 4880H CPU)
- Robust to dynamic environment

Bioscience Engineering, Biosystems, A2H, M3-BIORES

Bio-response quantification by computer vision

- Activity/Unrest index: the variation of pixel intensity due to poultry activity
- Occupation/cluster index: measure the degree of agglomeration

- Detecting malfunctioning in broiler houses
- Produce alarms in real-time when malfunctioning happens (in feeder or drinker lines, light, climate control, etc.)

eYeNamic monitor tool (Fancom/KU Leuven)

Associating image indicators with animal welfare indicators

- Fernandez A P, Norton T, Tullo E, et al. Real-time monitoring of broiler flock's welfare status using camera-based technology[J]. Biosystems Engineering, 2018, 173: 103-114.
- Pereira D F, Lopes F A A, Gabriel Filho L R A, et al. Cluster index for estimating thermal poultry stress (gallus gallus domesticus)[J]. Computers and Electronics in Agriculture, 2020, 177: 105704.

eYeNamic on the market

Going beyond the baseline PLF behaviour monitoring

Targeting a specific application

Monitoring of Red-Mite Infestation

Negative welfare ¹⁰⁰ million€

Approach followed

Hypothesis: General nighttime activity of laying hens increases with increasing PRM

Capturing nighttime activity of hens and link to PRM → Early warning!

Sleep monitoring method

MOVEMENT MAP IS CREATED.

HEATMAP: TOTAL NIGHT

Willems et al (2022)

Restlessness indicator!

M3-BIORES KU Leuven

Results

<u>Advantage</u>

Activity level clearly represents the restlessness of the birds during the dark period

Clear meaning for an early warning system

Disadvantage

Needs more effort for clear value for farmer – likely need more monitoring functionality to be useful

J/4/ZUZJ

Improving beyond the baseline PLF monitoring (weighing example)

Combining data from different devices

Improving the broiler-breeder weighing?

Motivation

- Breeding in a ratio of 10:1 (female: male) with different food supply
- Make rooster/hen follow empirical growth curve to maximum fertile eggs
- Non-uniform growth causes overlap

Objective

• Find more robust feature to separate rooster and hen

M3-BIORES KU Leuven

Time spent in the laboratory...

Features:

- Body area
- Body height (max&mean)
- Body length
- Body width
- Body ratio (height/width)
- Comb size

Time spent in the field...

May-10-05:10:15.840 4490

• Jumping action pattern (frame-wise rising)

Result

Technology available

•

Development of Automated Process Management solutions

Application of Robotics

Robotics has already infiltrated

- Robotic milking is a success
- But is there a <u>killer</u> <u>application</u> for other sectors?
- Need to do more than just replace the farmer?

Sophisticated robotics are needed for precision feeding

Business arguments for individual feeding

- Group-fed animals = feed high loss
- Oversupply of nutrients

Components of precision feeding are available:

- Measuring devices (scales for body weight and feed)
- **Real-time models** (e.g., estimating real-time nutrient requirements, etc.)
- Actuators (e.g., Intelligent feeders, etc.)

https://www.feedstrategy.com

	Precision vs. Conventional	
	feeding	
Variable	Trial 1	Trial 2
Feed intake	n.s.	n.s.
Weight gain	n.s.	n.s.
Protein deposition	n.s.	n.s.
Lipid deposition	n.s.	n.s.
Protein intake	< 16%	< 16%
Lysine intake	< 27 %	< 26 %
Nitrogen excretion	< 22%	< 30%
Feeding cost, \$/pig	< 8%	< 10%

More sophistication = more risks

Cangar et al. (2008)

More sophistication = more risks going from lab to field

5/4/2023

<mark>In the field</mark>

Risk in bringing tech early the market

- Flockman science based technology
- 15% of the market initially
- Teething problems are High Risk

Wathes (2010)

PLF adoption is about more than technology

a. Commercial potential needs to justify development:

• Depends on the stakeholder: genetics/health/productivity

b. Farmers need to be willing to take up the solution:

• Early warning versus advice

c. Business models should be clear:

- Market driven
- Incentivised

What we need to avoid!

Take home messages:

- Coarse indicators of behaviour change from PLF technology are of limited value to farmers. More interesting to target on important applications where value is clear
- 2. Combining technology are more accurate but additional hardware costs
- 3. Robotic solutions to achieve precision feeding can be of high impact but requires accurate sensing solutions and confident market introduction

What is certain!

• Faster implementation of PLF needs collaboration between researchers, farmers, industry and other stakeholders!

Thanks for your attention

tomas.norton@kuleuven.be

Find out more about us at: www.m3biores.com

Acknowledgements

