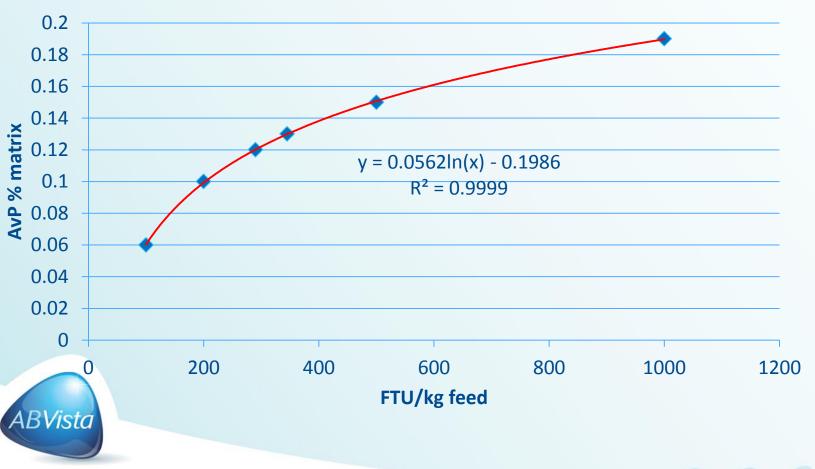
BENEFITS OF DESTRUCTION OF LOWER PHYTATE ESTERS

MIKE BEDFORD

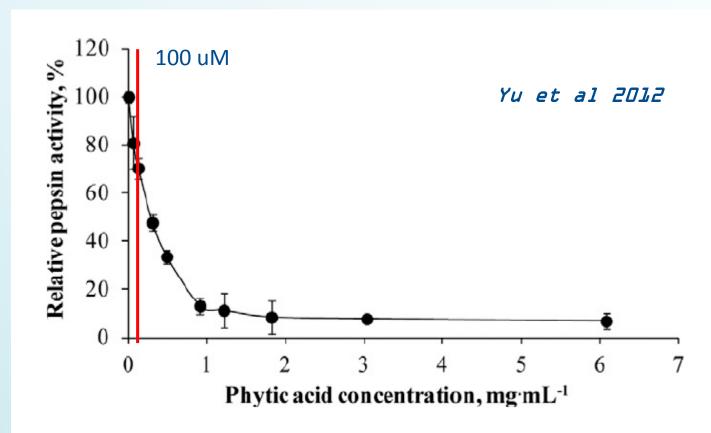
RESEARCH DIRECTOR, AB VISTA FEED INGREDIENTS

MARLBOROUGH, UK

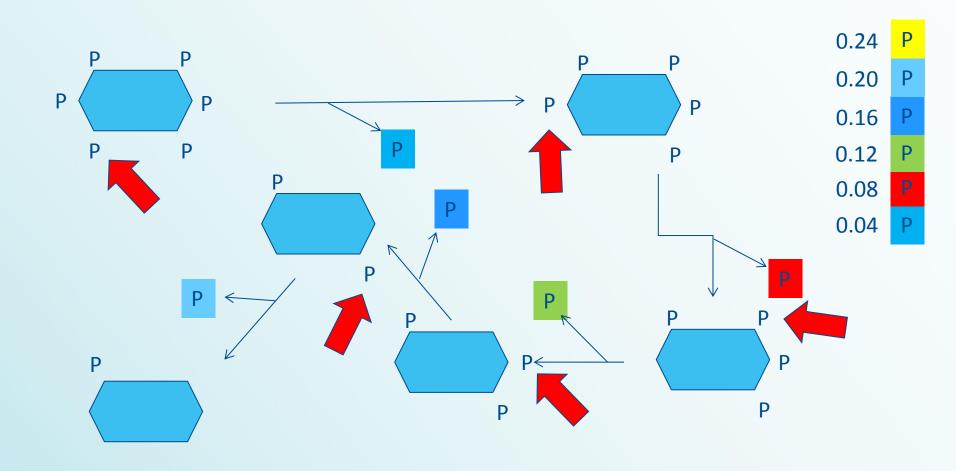

WPSA Italy, Bologna, Ath June 2017
"Phytate and Phytase:
the value chain of phytate destruction"

TRADITIONAL DOSING OF PHYTASES – MATRIX DRIVEN

P matrix vs dose for a "0.15" phytase



IPL degradation and the role of inositol



Pepsin inhibited at pH 2.5 by very little phytate

Figure 5. Phytic acid inhibition of porcine pepsin-catalyzed hydrolysis of azurine cross-linked casein. The assay was performed at 40°C. Each data point is the average of duplicate.

Phytase - Traditionally thought of as a means to provide P from IPL

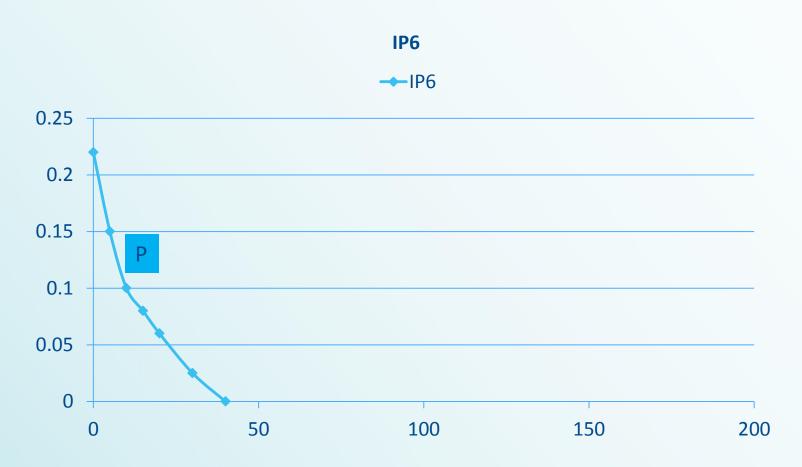


Figure 6. Time course of phytic acid hydrolysis by $E.\ coli$ phytase (Phyzyme XP, Danisco A/S, Brabrand, Denmark; 0.08 phytase unit \cong mL⁻¹) and inhibition of porcine pepsin catalyzed azurine cross-linked case in hydrolysis by the hydrolyzates. Phytic acid hydrolysis was performed at 37°C; pepsin activity assay was carried out at 40°C. Each data point is an average of 2 separate experiments.

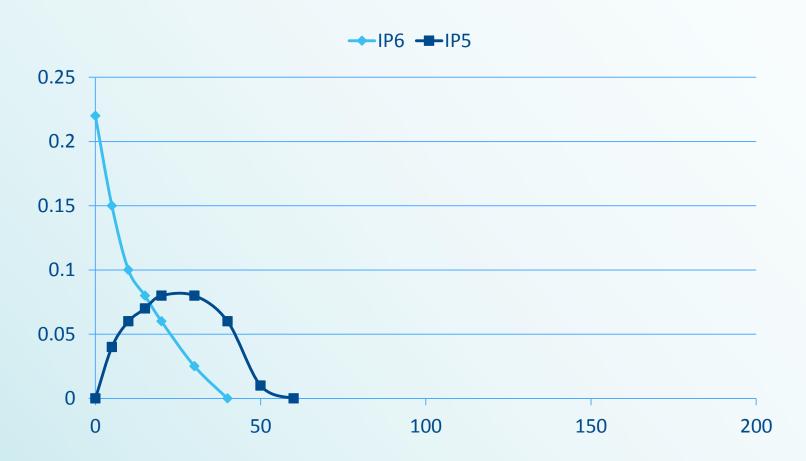


Figure 6. Time course of phytic acid hydrolysis by E. coli phytase (Phyzyme XP, Danisco A/S, Brabrand, Denmark; 0.08 phytase unit \cong mL⁻¹) and inhibition of porcine pepsin catalyzed azurine cross-linked case in hydrolysis by the hydrolyzates. Phytic acid hydrolysis was performed at 37°C; pepsin activity assay was carried out at 40°C. Each data point is an average of 2 separate experiments.

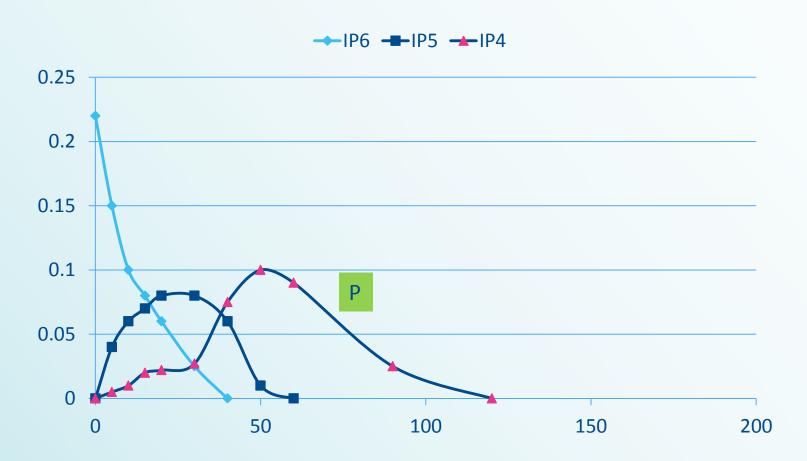


Figure 6. Time course of phytic acid hydrolysis by E. coli phytase (Phyzyme XP, Danisco A/S, Brabrand, Denmark; 0.08 phytase unit \cong mL⁻¹) and inhibition of porcine pepsin catalyzed azurine cross-linked case in hydrolysis by the hydrolyzates. Phytic acid hydrolysis was performed at 37°C; pepsin activity assay was carried out at 40°C. Each data point is an average of 2 separate experiments.

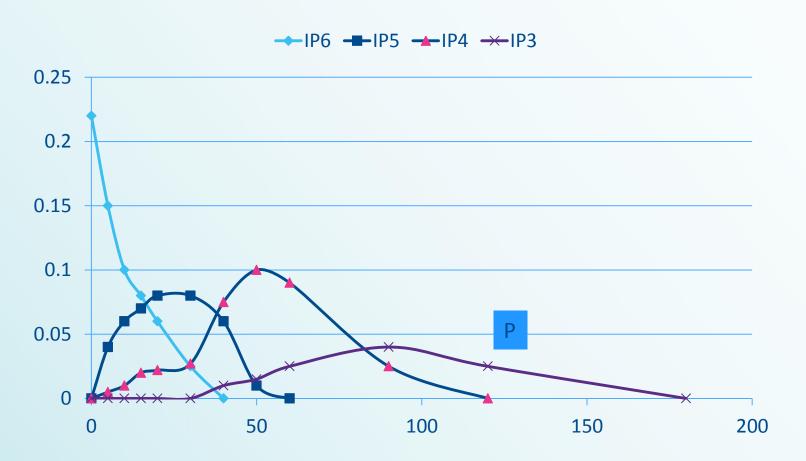


Figure 6. Time course of phytic acid hydrolysis by E. coli phytase (Phyzyme XP, Danisco A/S, Brabrand, Denmark; 0.08 phytase unit \cong mL⁻¹) and inhibition of porcine pepsin catalyzed azurine cross-linked case in hydrolysis by the hydrolyzates. Phytic acid hydrolysis was performed at 37°C; pepsin activity assay was carried out at 40°C. Each data point is an average of 2 separate experiments.

IP6 is not the only problem Phytase has to get rid of IP5→IP2 as well

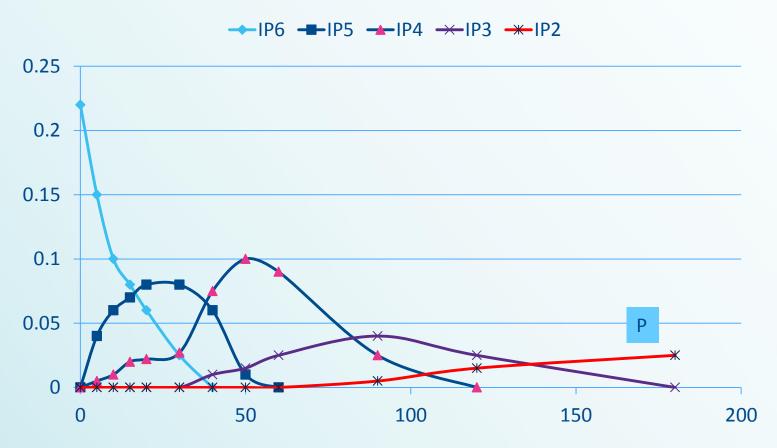


Figure 6. Time course of phytic acid hydrolysis by $E.\ coli$ phytase (Phyzyme XP, Danisco A/S, Brabrand, Denmark; 0.08 phytase unit \cong mL⁻¹) and inhibition of porcine pepsin catalyzed azurine cross-linked case in hydrolysis by the hydrolyzates. Phytic acid hydrolysis was performed at 37°C; pepsin activity assay was carried out at 40°C. Each data point is an average of 2 separate experiments.

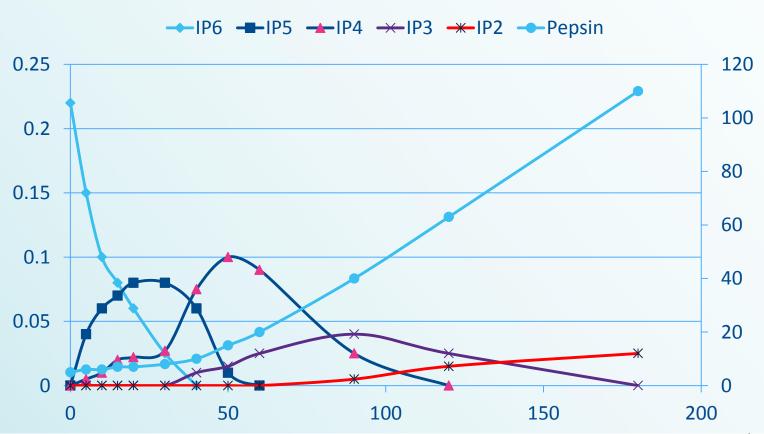


Figure 6. Time course of phytic acid hydrolysis by E. coli phytase (Phyzyme XP, Danisco A/S, Brabrand, Denmark; 0.08 phytase unit \cong mL⁻¹) and inhibition of porcine pepsin catalyzed azurine cross-linked case in hydrolysis by the hydrolyzates. Phytic acid hydrolysis was performed at 37°C; pepsin activity assay was carried out at 40°C. Each data point is an average of 2 separate experiments.

ru et ar.

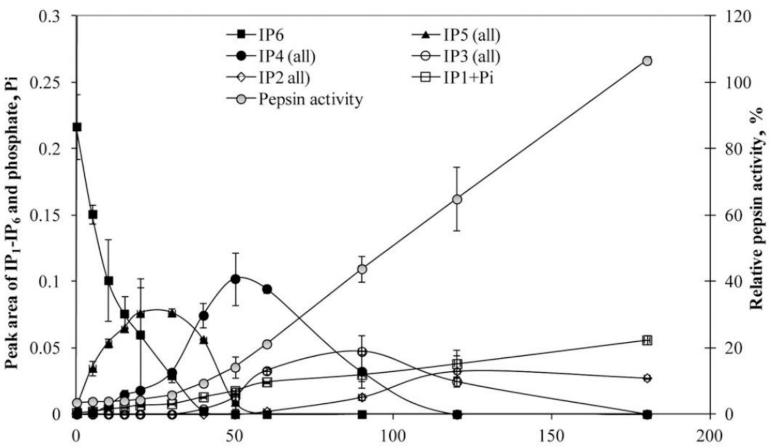


Figure 6. Time course of phytic acid hydrolysis by E. coli phytase (Phyzyme XP, Danisco A/S, Brabrand, Denmark; 0.08 phytase unit \cong mL⁻¹) and inhibition of porcine pepsin catalyzed azurine cross-linked case in hydrolysis by the hydrolyzates. Phytic acid hydrolysis was performed at 37°C; pepsin activity assay was carried out at 40°C. Each data point is an average of 2 separate experiments.

Knuckles 1989

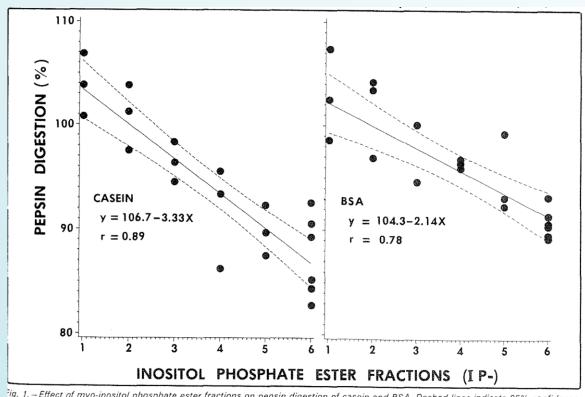


Fig. 1.—Effect of myo-inositol phosphate ester fractions on pepsin digestion of casein and BSA. Dashed lines indicate 95% confidence ntervals.

Lower IP esters are not innocuous

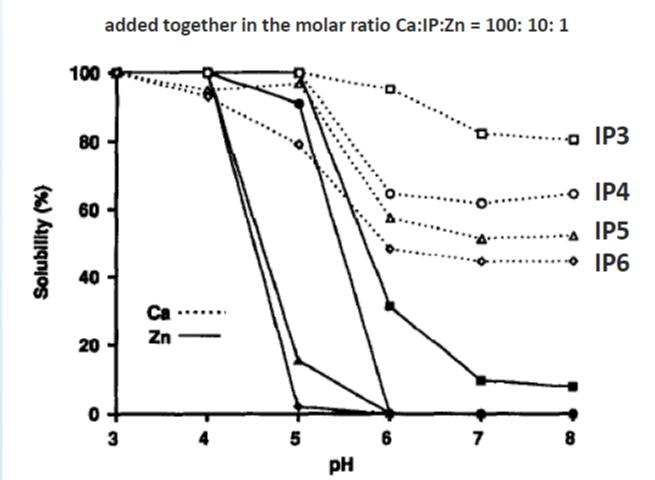
pH 1.2!!

PERSSON ET AL 1998

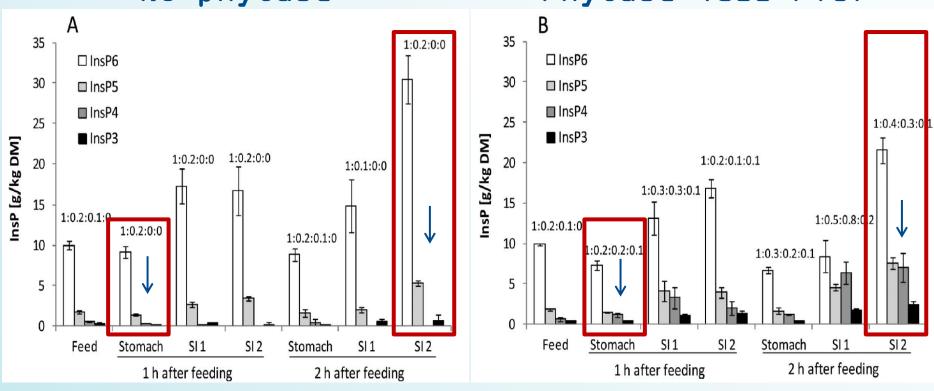
Lower IP esters are not innocuous

Table 1. Number of Metal Ions Bound per Inositol Molecule at pH \approx 5–6

IPX	$n_{\mathrm{Cu}^{2+}}$	$n_{Zn^{2+}}$	$n_{ m Cd^{2+}}$
IP6	5.8	4.9	5.3
IP5	5.7	4.8	5.1
IP4	3.3	3.0	3.3
IP3	3.1	3.0	2.4

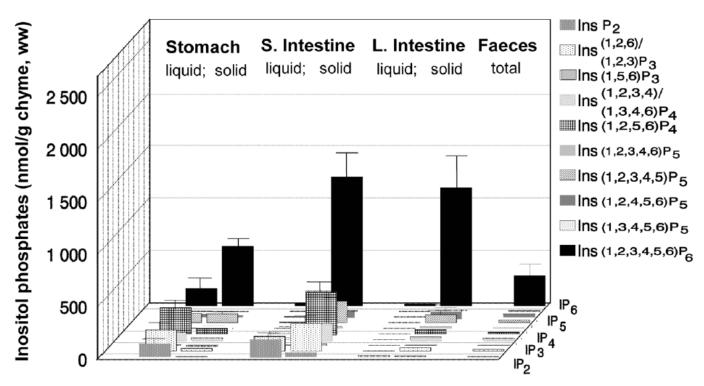


Lower IP esters are not innocuous



Xu, J. Price, A. Wise and P.J. Aggett, "Interaction of Inositol Phosphates with Calcium, Zinc, and Histidine," J. Inorgonk Biochemirt, 1992, 41,119- 130

Supplementation with a novel C. braakii phytase: Results in a 'pool' of IP4



Phytase (500 FTU)

Pontopiddan et al 2012. 25kg pigs fed 0 or 500 FTU HiPhos and after starving for 24hrs then fed treats for 30 mins, slaughtered 1 and 2 hours post feed. A=control, B =500FTU/kg

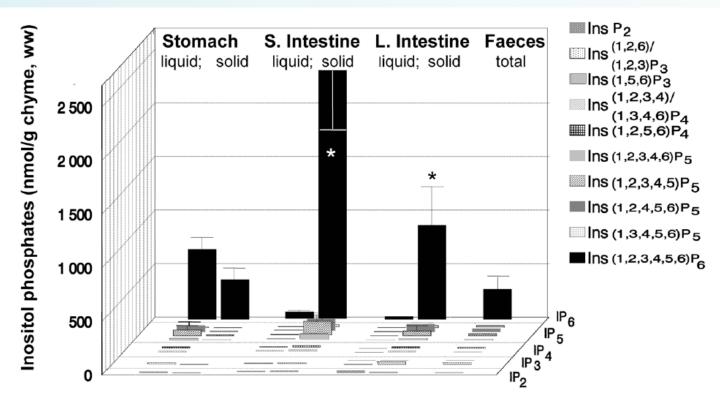

If it is present and soluble in the stomach, it will ppt with something in the SI

Figure 2. Hydrolysis of phytate from a diet rich in intrinsic feed phytases during the passage throughout the stomach, small intestine and large intestine as well as in the faeces of pigs 5 h after feeding [159]. Inositol phosphates are listed from the front to the back in the following row:

 $InsP_2$, $Ins(1,2,3)P_3/Ins(1,2,6)P_3$, $Ins(1,5,6)P_3$, $Ins(1,2,3,4)P_4/Ins(1,3,4,6)P_4$, $Ins(1,2,5,6)P_4$, $Ins(1,2,3,4,6)P_5$, $Ins(1,2,3,4,5)P_5$, $Ins(1,2,4,5,6)P_5$, $Ins(1,3,4,5,6)P_5$,

If it is present and soluble in the stomach, it will ppt with something in the SI

Figure 3. Hydrolysis of phytate from an extruded diet with inactivated phytases, during the gastro-intestinal passage throughout the stomach, small intestine and large intestine as well as in the faeces of pigs 5 h after feeding [159]. *Ins P_6 concentrations were different (p < 0.05). Inositol phosphates are listed from the front to the back in the following row: Ins P_2 , Ins(1,2,3) P_3 /Ins(1,2,6) P_3 , Ins(1,5,6) P_3 , Ins(1,2,3,4) P_4 /Ins(1,3,4,6) P_4 , Ins(1,2,5,6) P_4 , Ins(1,2,3,4,6) P_5 , Ins(1,3,4,5,6) P_5 and Ins P_6 .

IP4 AND IP3 ARE NOT INNOCUOUS

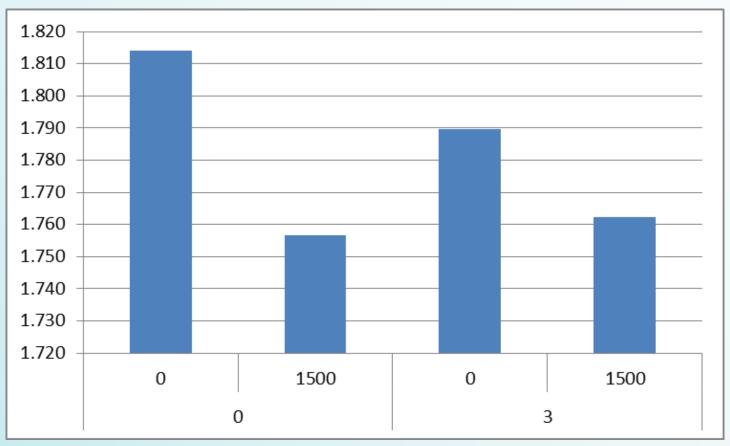
Ester	Nutrient	R	P value	n
Ileal iP3	Ileal AME, kcal	-0.849	< 0.0001	40
	Ileal DM digestibility	-0.848	< 0.0001	40
	Ileal N digestibility	-0.693	< 0.0001	40
	Ileal Na digestibility	-0.675	< 0.0001	40
Ileal iP4	Ileal Mg digestibility	-0.688	< 0.0001	40
	Ileal Fe digestibility	-0.606	< 0.0001	40

Beeson, 2016

IP3 and IP4 hydrolysis may have been overlooked

What about provision of inositol??

Inositol Provision Zyla et al 2004

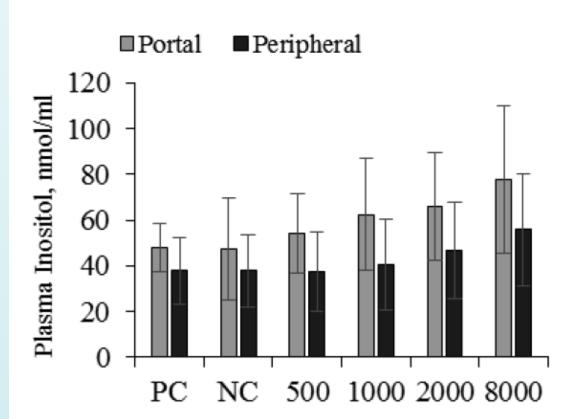

Myo-inositol	None	0.10%	p value
Intake	838	861	NS
Gain	537	579	0.0199
FCR	1.57	1.47	0.0573
Toe ash %	11.9	12.2	NS
P retention	56	5 50	0.0015
Ca retention	61	L 59	NS

Broilers, 1-21d post hatch, main effects on 0.65/0.27 and 0.8/0.47 Ca AvP diets

Inositol interacts with phytase It is likely part of the superdosing effect

• FCR

- Inositol* Phytase interaction p<0.0143
- LSD = 0.017


WPSA Italy, Bologna, 8th June 2017

Grower Pigs - SD reduces IP4 and 3 and increases inositol in 37kg pigs

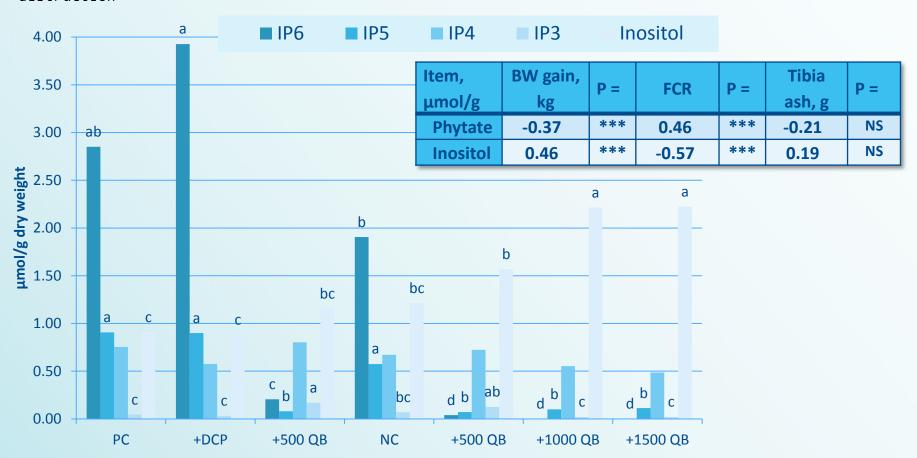
Table 1 Effect of dietary phytase level on ileal InsP₂₋₆ and MYO concentration (nmol/g DM).

Diet	MYO	InsP ₂	InsP ₃	InsP ₄	InsP ₅	InsP ₆
PC	4,422	5,330	917	1,711	3,052	21,616
NC	4,309	5,142	657	1,204	2,950	25,189
500	7,729	5,634	1,236	2,658	2,075	15,217
1000	9,964	4,663	1,195	1,972	1,271	12,505
2000	12,812	5,841	1,172	1,771	987	11,038
8000	14,086	5,149	413	304	574	7,868
SEM	1,744	821	177	400	311	2,817
P value						
Linear	0.001	0.907	0.002	< 0.001	< 0.001	0.001
Quadratic	0.008	0.449	0.012	0.162	< 0.001	0.007

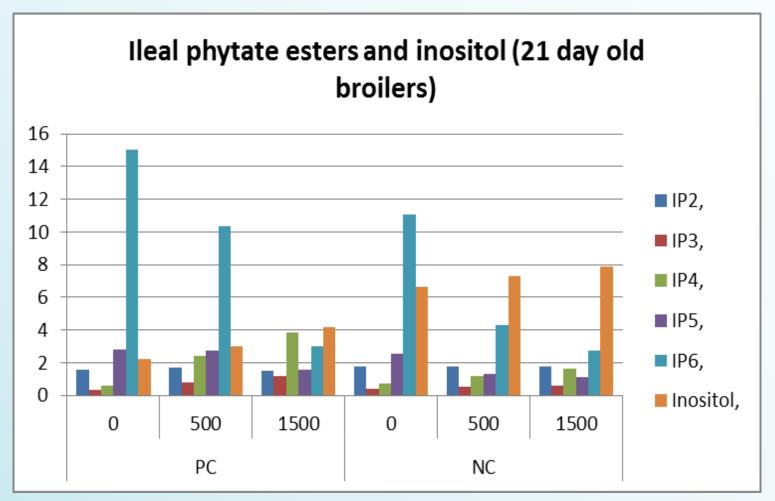
Grower Pigs - Increased ileal inositol correlates with increased plasma inositol - especially portal

Figure 1 Effect of dietary phytase level on portal and peripheral plasma MYO concentration.

Piglet IPL in ileum

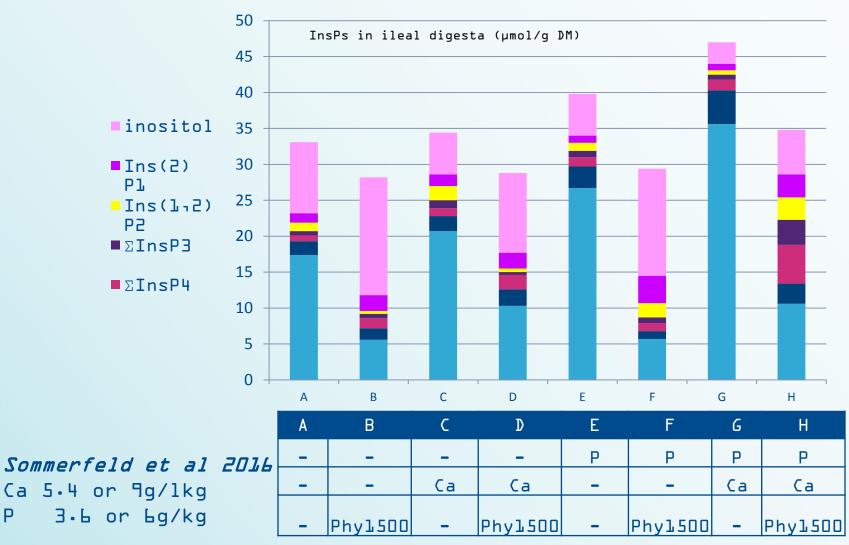

	Fe,	PHY,	∑IP5 +						
<u>Treatment</u>	mg/kg	FTU/kg	IP6	IP6	IP5	IP4	IP3	IP2	Inositol
LO-0	110	0	28435	23985	4450	3620	1949	3272	3184
LO-500	110	500	14476	12307	2169	5200	3617	5293	6780
LO-2500	110	2500	6953	6267	797	1613	1428	4670	10297
HI-O	360	0	21033	17518	3515	5011	2668	3812	4305
HI-500	360	500	14849	12509	2341	4917	2837	3505	4314
HI-2500	360	2500	9865	8739	1125	2850	1767	4418	8795
SEM			2516	1896	329	769	454	568	1096
Main									
effects	Fe								
		110	16658	14186	2472	3478	2332	4412	6753
		360	15249	12922	2327	4259	2424	3912	5805
	SEM		1494	1334	195	457	269	337	651
	PHY	0	24734	20751a	3983ª	4316a	2308 ^{ab}	3542	3744°
		500	14662	12408 ^b	2255b	5059a	3227a	4399	5547°
		2500	8464	7654 ^b	961°	2231 ^b	1598 ^b	4544	9546 ^b
	SEM	2000	1779	1636	233	544	322	402	775
P-value	0			. 555	200	G	022		., 0
	Fe		0.483	0.480	0.578	0.220	0.808	0.263	0.295
	PHY		< 0.001	< 0.001	< 0.001	0.002	0.004	0.174	< 0.001
	Fe x		3.331	0.00	0.001	0.002	3.33	31 1	0.007
	PHY		0.128	0.140	0.132	0.496	0.245	0.130	0.253
			020	· · · · · · · · · · · · · · · · · · ·	002	<u> </u>	0.2.0		

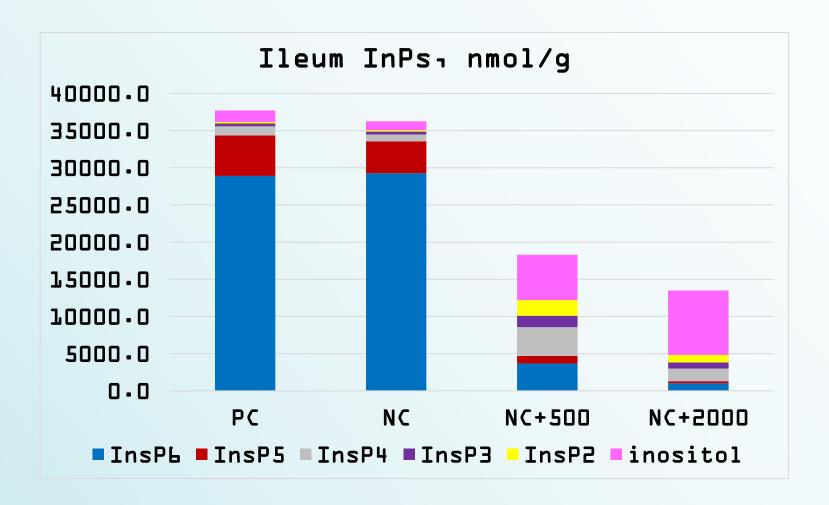
Extra-phosphoric effects of phytase


Broiler gizzard phytate, phytate ester and inositol concentration (d21)

Superdosing Quantum Blue decreased phytate and increased inositol concentration

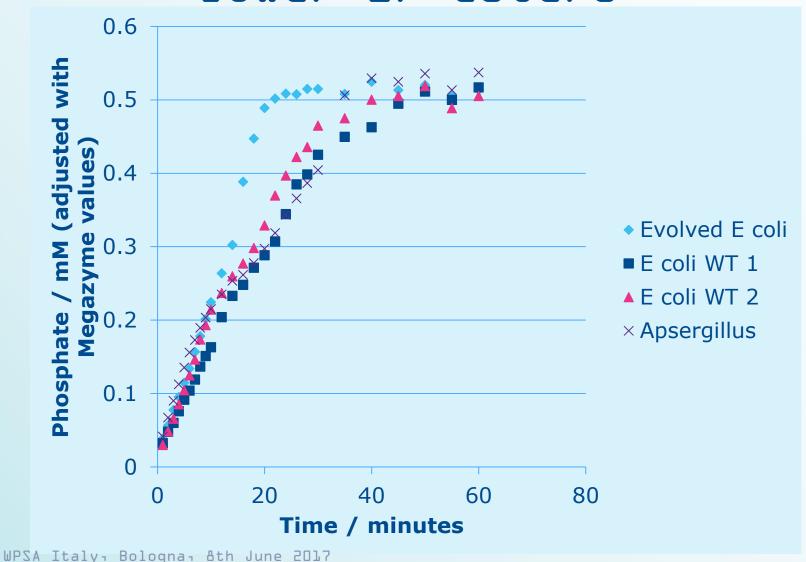
Part of the superdosing response may be associated with inositol provision as well as phytate destruction



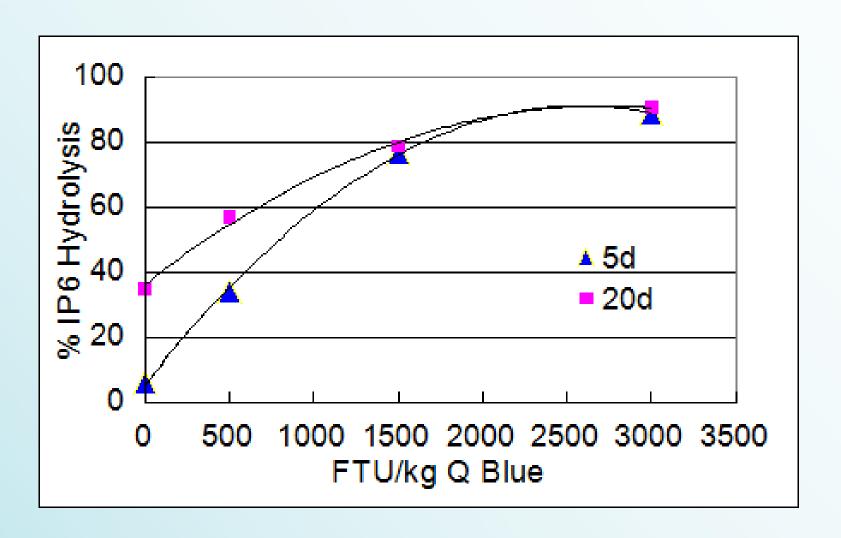

Phytase more effective in low Ca diets

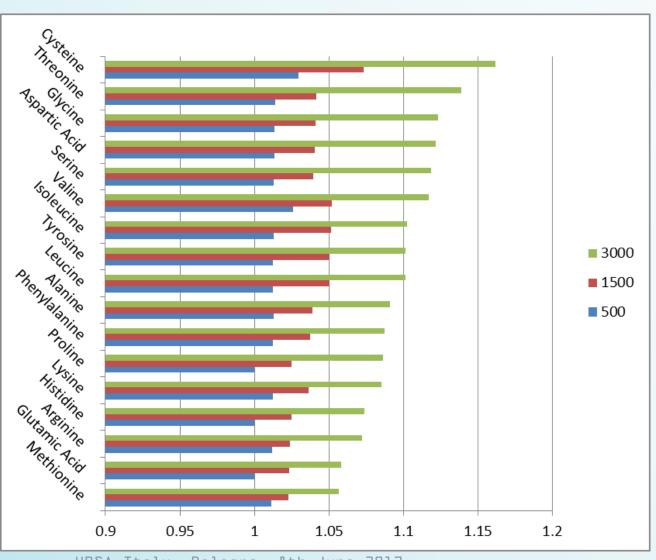
Beeson et al 2016 (QBA 07) Mixed wheat/CS diet. NC 500 matrix on Can P and Na

Influence of dietary Ca and P on InsP hydrolysis in broiler ileum

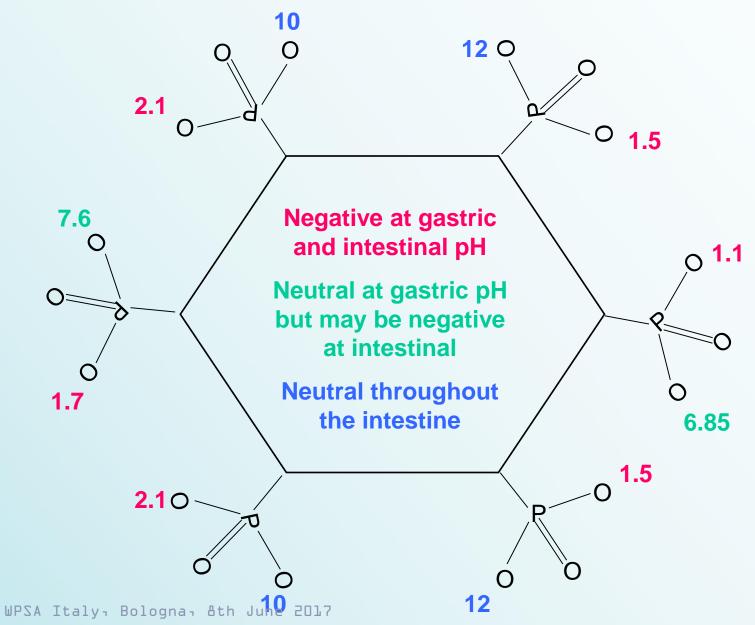


SUPERDOSING OTHER FACTORS TO CONSIDER

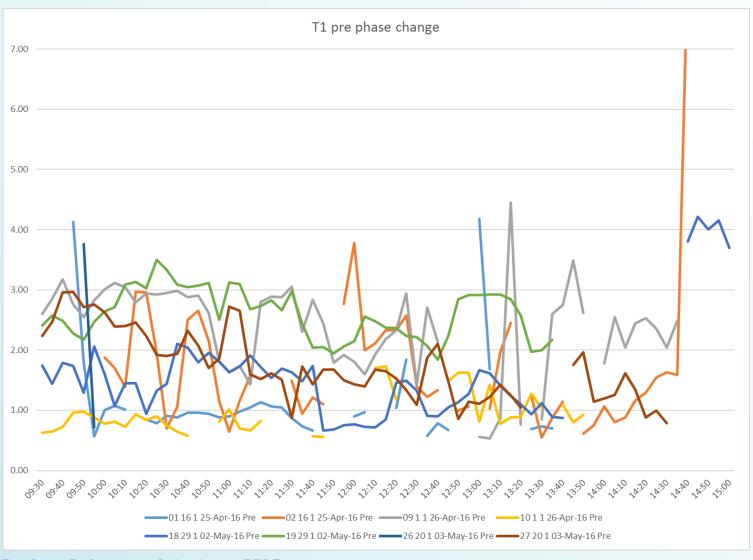



Phytases differ in appetite for lower IP esters

Beaulac et al 2016



Beaulac et al 2015



WPSA Italy, Bologna, 8th June 2017

pKa Charges

pH of the Gizzard?

Considerations

- A phytate destruction response in performance efficiency is empirically related to IP4 and IP3 reduction.
- 1)Does focus on IPL and IPS target the problem incorrectly? IP4, IP3....??
- 2) More complete IPЬ→IPl →
 Provision of inositol

3) Do pH shifts limit time for

Implications in the field Trace minerals

Catfish mineral levels

Phytase Mineral Levels (as % of Control Levels)

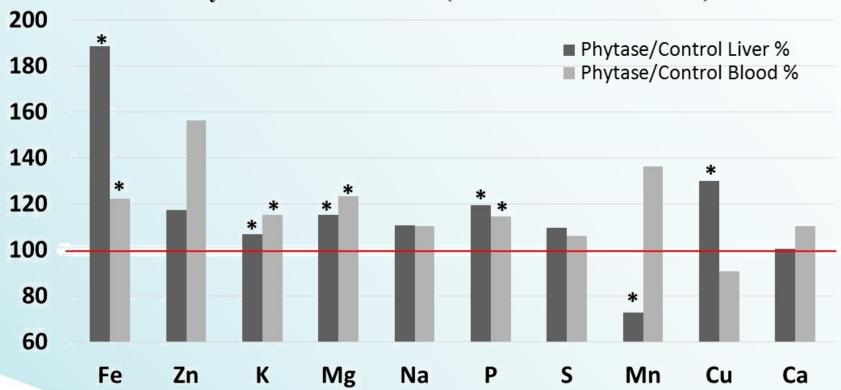
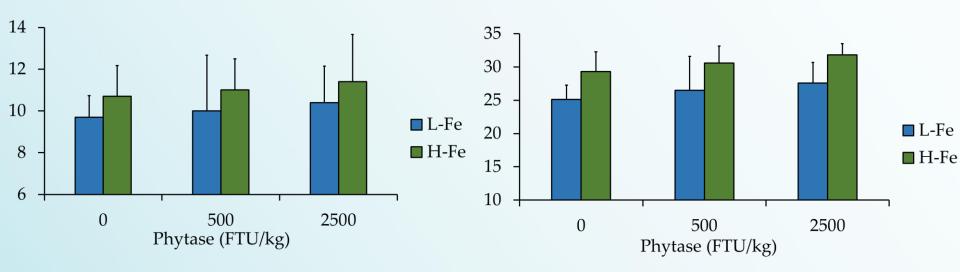
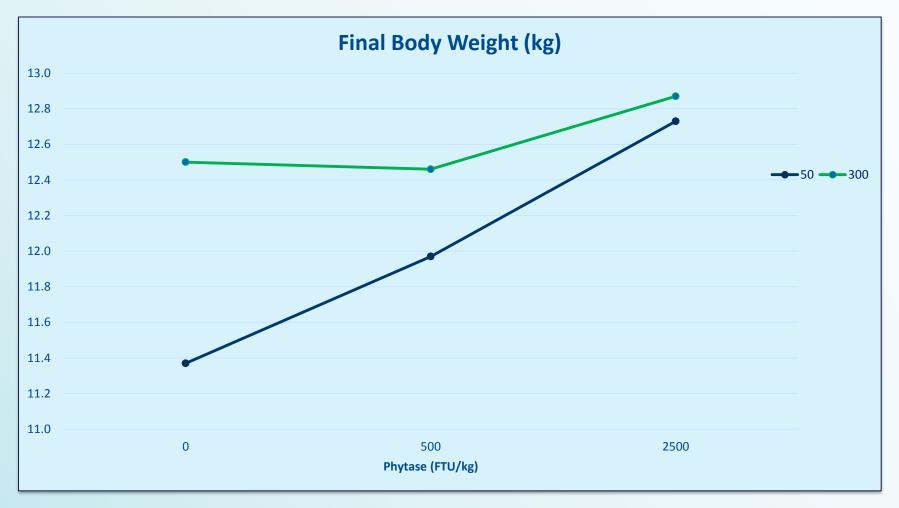
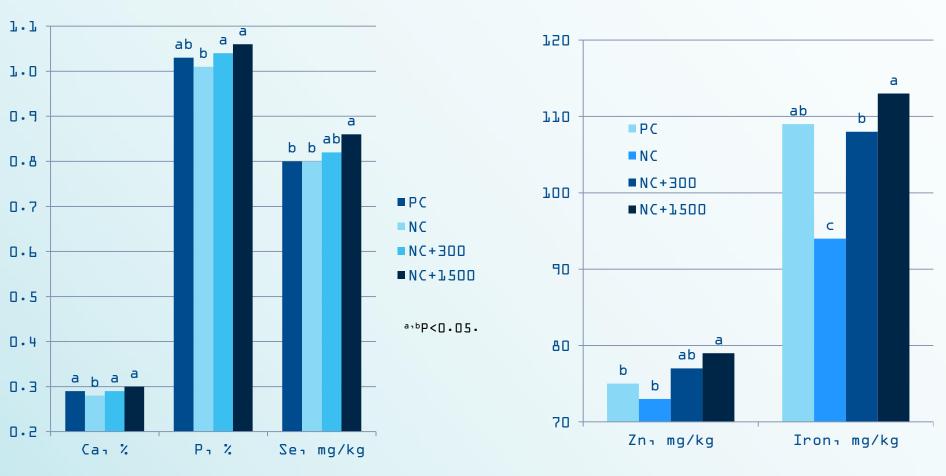



Fig. 2. ICP analysis of liver and blood mineral levels in catfish fingerlings fed a 28% protein control diet or a 28% control diet supplemented with 2500 FTU/kg of phytase for 12 weeks. Data is presented as phytase-fed fish mineral levels as percentage of control diet fish mineral values with the red line noting the 100% level. Asterisks denote statistical significance at the p<0.05 level

Effect of Fe and QB on blood parameters in pigs


Effect of phytase and Fe supplementation on Hb concentration (g/l)

Effect of phytase and Fe supplementation on haematocrit %


Laird et al 2017 BSAS

Effect of Fe and Blue on piglet performance

Superdosing New Generation phytase: Mineral deposition in the yolk

- QB superdosing increases mineral deposition in the yolk
- Se and Zn levels of NC+1500FTU/kg were higher than birds fed PC diets.

Increase tissue mineralization

Yolk minerals from 31 to 78 weeks of lay

Treatment	P (%)	Ca (%)	Fe (mg/kg)	Zn (mg/kg)	Se (mg/kg)
PC	1.05p	0.29ª	1 07♭	74 ^{bc}	0.78b
NC	1.01 _p	0.27b	9 4¢	72°	0.78b
NC+300 FTU QB	1.05 ^{ab}	0.29ª	109 ^{ab}	7 & ab	0.79ab
NC+1500 FTU QB	1.07ª	0•30ª	113ª	79ª	□.8 4ª

Soto et al., 2013

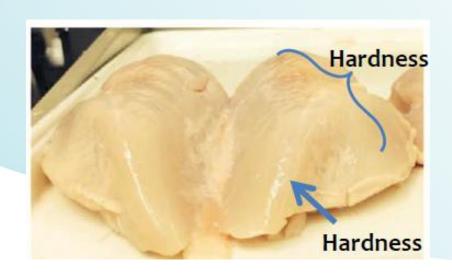
Implications in the field Woody breast

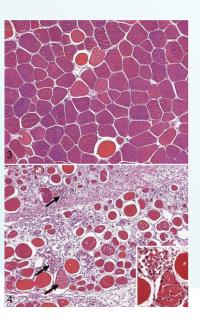
Woody Breast: What's causing it?

Relationship between pectoralis major muscle histology and quality traits of chicken meat

M. Mazzoni, M. Petracci, A. Meluzzi, C. Cavani, P. Clavenzani, and F. Sirri¹

*Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Ozzano dell'Emilia (BO), Italy 40064; and †Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Ozzano dell'Emilia (BO), Italy 40064


 $2015 \ Poultry \ Science \ 94:123-130 \\ http://dx.doi.org/10.3382/ps/peu043$


malities (Sihvo et al., 2014). The presence of T lymphocytes (confirmed by using of the specific chicken antibody) together with the aforementioned fibrosis and necrosis has confirmed that this is a chronic inflammatory process, which probably represents the undesired result of genetic pressure for increased growth rate of breast muscle.

WOODEN BREAST: HYPOTHESIS

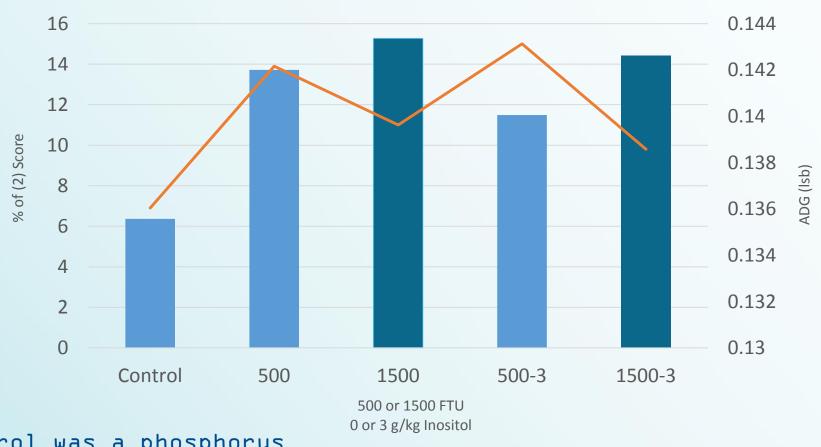
Muscle appears to have a reduced capillary blood supply leading to necrosis of the muscle and macrophage infiltration. In response to necrosis fibrosis takes place leading to replacement of muscle specific protein with highly cross-linked collage giving it the 'wooden appearance". (S. Velleman, 2016)

University of Delaware

"What we found is that there may be localized hypoxia—
a lower oxygen concentration in the affected tissues. In
addition, our findings strongly suggest presence of
oxidative stress— when free radicals build up and there
aren't enough antioxidants to detoxify them— as well as
an increase in calcium in the tissue cells."

"There were lots of similarities in the results of this work and the gene expression work that really confirmed each other." Abasht said. "The results confirmed that there's oxidative stress in affected muscles."

- B. Abasht, Dept. of Animal and Food Sciences
- Identified biomarkers for this disorder



Initial Research

- Ross 308 Male broilers
- Phytase x Inositol
 - 500, 1500 FTU/kg Phytase
 - D₁ 3 g/kg Food Grade Inositol
- 49 days of age

Sirri and Walk, 2014, unpublished

D49 ADG *vs* Severe Form Woody Breast

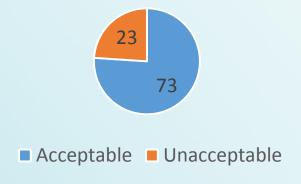
Control was a phosphorus deficient diet, slower growth expected.

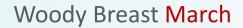
ADG —Score 2 (IT)

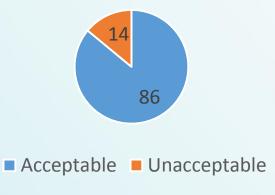
Sirri and Walk, 2014, unpublished

USA trial

			Day 18			Day 42				
Treatment	Matrix	Phytase (ftu)	Body wt, g	Mort FCR	Liv, %	Body wt, g	Mort FCR	Wt corr FCR	Liv., %	
1	Mineral	0	584	1.377	95	3055	1.527	1.533	88.6	
2	Mineral	500	597	1.384	94.3	3086	1.492	1.489	87.1	
3	Mineral	1500	619	1.328	96.4	3177	1.499	1.467	85	
4	Full- AA	0	589	1.375	96.4	3042	1.545	1.555	89.3	
5	Full- AA	500	609	1.348	97.1	3171	1.503	1.473	90.7	
6	Full- AA	1500	613	1.323	96.4	3162	1.490	1.463	87.1	
						32g =				

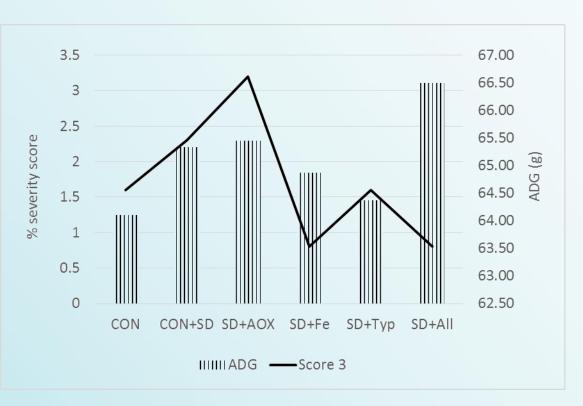

				Day 46								
											White	
								Carcass Yield,	Breast wt,	Breast yield,	meat yield,	Hemacrit
Tre	eatment	Matrix	Phytase (ftu)	Body wt, g	Mort FCR	Wt corr FCR	Liv., %	%	g	%	%	values, %
	1	Mineral	0	3466	1.608	1.619	86.4	78.4	886	22.9	27.25	24.99
	2	Mineral	500	3475	1.565	1.573	85	78.5	923	23.6	28.1	25.03
	3	Mineral	1500	3605	1.566	1.533	83.6	78.5	908	23.2	27.6	26.39
	4	Full- AA	0	3486	1.608	1.612	85	78.3	887	22.6	26.9	25.99
	5	Full- AA	500	3572	1.57	1.548	88.5	78.4	880	22.5	26.7	28.30
	6	Full- AA	1500	3589	1.59	1.562	85	79.3	907	22.7	27.05	26.74
						32g = 0.01	pts for 3500					




Severity of Woody Breast Reduced

A wk Field Study
Superdosing Quantum Blue, Organic Zn, Ethoxyquin

Woody Breast February



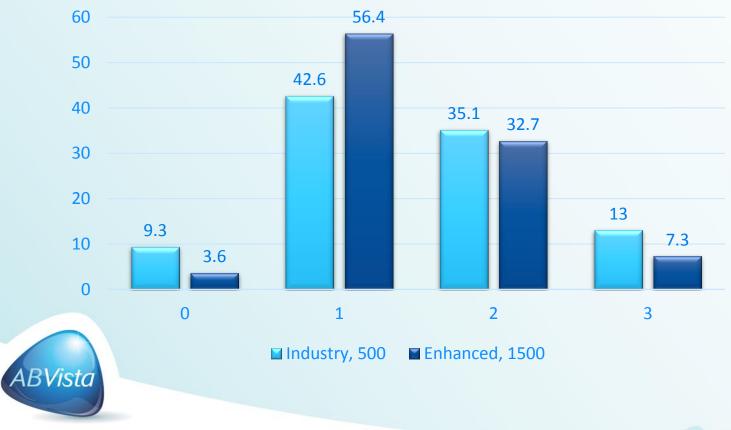
CQR Woody Breast Evaluation

TRT	ВШ	FCR adj	% BMY	
CON	8.62	1.624	32.05	
CON +ZD	8.79	1.600	35.20	
XOA + CZ	8-80	1.593	35.66	
SD + Fe	8.72	1.598	35.87	
SD + Tryp	8-66	1-636	32.34	
SD + All	8.94	1.564	32.78	

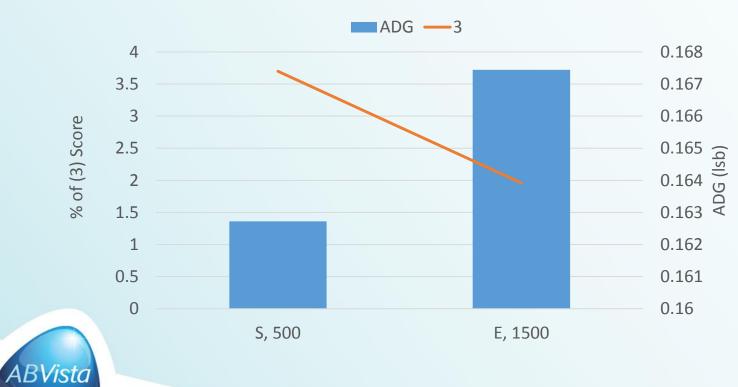
"SD + ALL TRT were the heaviest birds with the lowest FCR and highest ADG.

UARK Woody breast evaluation

- 500 or 1500 FTU Quantum Blue
- O or 125 ppm Ethoxyquin
- Industry or Enhance VTM premix
 - Enhanced had higher vitamin levels and more bioavailable forms or Zn₁ Cu₁ & Org Se source.



Day 63 Woody Breast Comparison



UARK Severity Score of 3 Cut in Half

Recap

- 1. Phosphorus
- 2. Minerals
- 3. Inositol
- 4. $Ip6 \rightarrow Ip2/1$
- 5. Microbiome
- 6. Antioxidant effects

