Trace element nutrition and bone metabolism

Cibele Torres¹,² & Doug Korver¹

¹University of Alberta, Edmonton, AB Canada
²Current Address: Nutreco Poultry Research Centre, Spain
The Broiler Skeleton

Bone mineral

• Mineralization
 – Hydroxyapatite $\text{Ca}_{10}(\text{PO}_4)_6(\text{OH})_2$

• Bone strength
 – brittleness

http://www.iupui.edu/~bbml/boneintro.shtml
Cartilage matrix

- Tensile strength & elasticity
Embryonic bone growth

Cartilage model → Femur – 20d embryo → 20d chicken embryo
Embryonic bone growth

Adapted from Kubota et al., (1981)
Bone growth - elongation
Bone growth - width
Trace elements & bones
Trace elements & bones

- **Copper**
 - Lysyl oxidase
 - Elastin and collagen cross-linking
 - Tensile strength and elasticity

A: non-crosslinked collagen fibrils
E,G: crosslinked collagen fibrils after mineralization composed of bundles of subfibrils

Yi & Aparicio, 2013
Trace elements & bones

• Manganese
 – Polymerase & galactotransferase
 • Chondroitin sulfate – hyaline cartilage
Trace elements & bones

• Zinc
 – Collagenase cofactor
 • Collagen formation
 – Alkaline phosphatase
 • Bone mineralization
 – Osteoblast proliferation
 – Growth plate gene expression
Trace element requirements

• Little new research
 – Dietary requirements well understood
 – Low cost of supplementation
 – Tolerance of excess

• Opportunities
 – Selection for rapid growth
 – Maternal nutrient transfer
 – Organic trace minerals
 – Phytase
Broiler 50 years ago Broiler 30 years ago Today's Broiler

M. Zuidhof, University of Alberta
Organic trace elements

- Inorganic trace minerals (ITM)

- Organic trace minerals (OTM)
Organic trace elements

Organic forms are assumed to have increased bioavailability

(Lesson, 2003)
Maternal trace element nutrition

Femur width at hatch

P = 0.005

Control OTM OTM + ITM High ITM
Femur length E15

Treatment: P=0.005
BW <.0001

a, b, c LSmeans with different letters are significantly different (P≤0.05).
Phytase

Structure of Phytic Acid (A) and Phytic Acid Chelate (B)

Myo-inositol hexaphosphoric acid
Conclusion

• Trace minerals are essential for bone formation

• Little current research on trace minerals and bone metabolism
 – Physiological limits to skeletal growth/development?
 – Specialized application of supplements
 • Organic trace elements
 • Phytase